q−Orthogonal dualities for asymmetric particle systems
نویسندگان
چکیده
We study a class of interacting particle systems with asymmetric interaction showing self-duality property. The includes the ASEP(q,θ), exclusion process, repulsive interaction, allowing up to θ∈N particles in each site, and ASIP(q,θ), θ∈R+, inclusion that is its attractive counterpart. extend setting investigation orthogonal duality properties done [8] for symmetric processes. analysis leads multivariate q−analogues Krawtchouk polynomials Meixner as functions generalized process version, respectively. also show how q-Krawtchouk orthogonality relations can be used compute exponential moments correlations ASEP(q,θ).
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملec 1 99 9 Asymmetric particle systems on
We study interacting particle systems on the real line which generalize the Hammersley process [D.sen point between their previous position and that of the forward neighbor, at a rate which may depend on the distance to the neighbor. A class of models is identified for which the invariant particle distribution is Poisson. The bulk of the paper is devoted to a model where the jump rate is consta...
متن کاملS ep 1 99 9 Asymmetric particle systems on R ∗
We study interacting particle systems on the real line which generalize the Hammersley process [D. Particles jump to the right to a randomly chosen point between their previous position and that of the forward neighbor, at a rate which may depend on the distance to the neighbor. A class of models is identified for which the invariant particle distribution is Poisson. The bulk of the paper is de...
متن کاملDualities in integrable systems: geometrical aspects
We discuss geometrical aspects of different dualities in the integrable systems of the Hitchin type and its various generalizations. It is shown that T duality known in the string theory context is related to the separation of variables procedure in dynamical system. We argue that there are analogues of S duality as well as mirror symmetry in the many-body systems of Hitchin type. The different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2021
ISSN: ['1083-6489']
DOI: https://doi.org/10.1214/21-ejp663